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Chapter 9

ROTATIONAL   MOTION -- PART   I I

A.)  Torque:

1.)  So far, we have developed rotational counterparts for displacement,
velocity, acceleration, and mass.  It is now time to consider the rotational
counterpart to force.

When a net force is applied to an object, the object accelerates (Newton's
Second Law).  Torque is the rotational counterpart to force in the sense that
when a net torque is applied to a body, the body angularly accelerates.  While
force is applied in a particular direction, torque is applied about a point (the
point of interest is usually on the body's axis of rotation).  Torque calculations
were briefly discussed in Chapter 1 (the idea of a torque was used there as an
example of a vector cross product operation).  We will go into more depth here.

2.)  The easiest way to understand the concept of a torque is with an
example.

a.)  A force F is applied to a wrench a distance r from the axis of
rotation (see Figure 9.1).
From experience, it should
be obvious that:

i.) The greater   r  is,
the less difficult it is to
angularly accelerate
the bolt;

ii.) The greater   F
is, the less difficult it is
to angularly accelerate
the bolt; and

iii.) The force
component that makes the bolt angularly accelerate is the component
perpendicular to the line of r (i.e.,   F  sin φ).
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b.)  As ease of rotation is related to   r  and   F sin φ , the product of
those two variables is deemed important enough to be given a special
name--torque (ΓΓ ).  In short, the magnitude of the torque applied by F
about some point will be ΓΓ  =     rxF .  As a vector, torque is defined as:

ΓΓ  = r x F.

Note:  It is not unusual to find physics texts making statements like, "a
force F applies a torque about the axis of rotation."  This can be confusing
because, by definition, torques are not applied about axes--they are applied
about points.  A more accurate way to make the statement would be to say, "a
force F applies a torque about a point that is both in the plane of the paper and
on the axis of rotation."  Unfortunately, although this is technically correct, it is
also wordy and cumbersome.  As a consequence, physicists shorten such
statements to, "a force F applies a torque about the axis of rotation."

There is nothing wrong with this shorthand description as long as you under-
stand the assumption being made when torque calculations are termed this way.

Bottom line:  From here on out, you will be expected to know what "take
the torque about the axis of rotation" means.

3.)  In the first chapter we found that a cross product is a vector
manipulation involving two vectors (say r and F).  It generates a third vector
whose magnitude is numerically equal to the product of:

a.)  The magnitude of one of the vectors (say   r  in this case), and

b.)  The magnitude of the second-vector's-component that runs
perpendicular to the first vector (in this case,   F sin φ ).

c.)  Assuming the vector information is in polar notation, the
magnitude of the torque calculation will be the magnitude of a cross
product, or:

    ΓΓF =     rxF
          =   r    F  sin φ ,

where φ  is the angle between the line of r and the line of F.
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4.)  The direction of the cross product is perpendicular to the plane defined
by the two vectors.  In the case of a torque produced by an r and F vector in the
x-y plane, this direction is along the z axis in the k direction.  That is fortunate.
Remembering that the direction of an angular velocity and angular acceleration
vector is along the axis of rotation, a torque that makes an object rotate in the x-
y plane should have a direction perpendicular to the x-y plane (i.e., in the
direction of the axis of rotation about which the angular acceleration is taking
place).  That is exactly the direction the
cross product gives us.

5.)  There are three ways to
calculate a cross product and, hence, a
torque.  All three will be presented
below in the context of the following
problem:  A 10 newton force is applied
at a 60o angle to a giant wrench 3
meters from the axis of rotation (see
Figure 9.2).  How much torque does the
force apply about a point on the central
axis of the bolt (i.e., on the axis of
rotation) in the plane of the wrench?

a.)  The "definition"
approach:  Take the definition of a cross product and apply it to the
situation.  Doing so yields:

    ΓΓF =     rxF
           =     r          F        sin φ ,

          = (3 m) (10 nts) sin 60o

          = 25.98 nt.m.

The direction is determined using the right-hand rule.  Doing so yields
a +k direction.  As our rotation is one-dimensional (i.e., there is only one
axis about which the rotation occurs) in the x-y plane, we don't need to
include the k unit vector.  We do need to include the "+" sign (it tells us
that the torque will attempt to angularly accelerate the object in the
counterclockwise direction).  The end result is, therefore:

        ΓF = +25.98 nt.m.

b.)  The "  r ⊥" approach:  We know that the magnitude of a cross
product is equal to the magnitude of one vector times the perpendicular
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component of the second vector (i.e., the component of the second vector
perpendicular to the line of the first vector).  If we let F be the first vector,
the "perpendicular component of the second vector" will be the component
of r perpendicular to the line of F.   Calling this  term   r⊥ , we have:

  ΓΓF  =   r ⊥( )  F .

 Note 1:  This approach is so commonly used that most texts give   r⊥  a
special name.  They call it the moment arm.  Using that term, we write, "the
torque about Point P is equal to the force times the moment arm about Point P."

Why is the   r⊥  approach used so often?  Read Note 2!

Note 2:  Physically,   r⊥  is the shortest distance between the point about
which the torque is being taken (usually on the axis of rotation) and the line of
the force.  As it is often easy to determine the shortest distance between a point
and a line, this method of calculating torques is very popular.

Note 3:  Having extolled the virtues of the   r⊥  approach, it should be
pointed out that in this particular
problem, the easiest way to
determine the torque is by using
either the definition approach or
the approach that will be
presented last.  Be that as it may,

  r⊥  is what we are concerned with
here!

CONTINUING:  Consider
Figure 9.3.  The line of F has
been extended in both directions, allowing us to see the shortest distance
between "the axis of rotation and the line-of-the-force" (i.e.,   r⊥ ).  With that and a
little geometry, we find that:
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      ΓΓF  =                     rxF

                 =            r ⊥( )                F

                 = [(3 m) (sin 60o)]  (10 nts)
                 = 25.98 nt.m.

Note:  The direction is determined using either the right-hand rule or
your knowledge about clockwise versus counterclockwise rotations.  The final
solution is +25.98 nt.m.

c.)  The "  F⊥ " approach:  We know that the magnitude of a cross
product is equal to the magnitude of one vector times the perpendicular
component of the second vector (i.e., the component of the second vector
perpendicular to the line of the first vector).  If we let r be the first vector,
the "perpendicular component of the second vector" will be the component
of F that is perpendicular to the line of r.  Calling this component   F⊥ , we
have:

  ΓΓF  =   F⊥( )  r .

Note 1:  This is the flip-side of the   r⊥  approach and it works in
approximately the same way.  Extend the line of r until you can see the
component of F perpendicular to that line.  With that information, you simply
multiply the magnitude of r by   F⊥ .

Note 2:  This approach is most useful whenever you are given the force
component perpendicular-to-the-line-of-r.  Our problem is a good example of
such a situation.  The vector r is in the x direction.  We know   F⊥  because it was
given to us (look back at Figure 9.2).  With that unit vector information, the   F⊥

approach falls out nicely.
Bottom line:  If you are given information in unit vector notation, think   F⊥

approach.  It won't always work, but when it does it will work easily.

Continuing:  As   F⊥  is Fy, we can write:

  ΓΓF  =     rxF

                         =      F⊥( )       r
                 = [8.6 nts] (3 m)
                 = 25.8 nt.m.
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Note:  The direction is determined using either the right-hand rule or
your knowledge about clockwise versus counterclockwise rotations.  The final
solution is +25.98 nt.m.

d.)  Even though the   r⊥  approach is often used, there is really no one
approach that is better than any other.  For some problems, the   r⊥

approach is a horror.  KNOW THEM ALL.  It's better to have a choice
than to get hung with a problem that doesn't seem to easily work out
using the only approach you have learned!

B.)  Rigid Body Equilibrium Problems:

1.)  There are two kinds of equilibrium: dynamic equilibrium in which a
body is moving but not accelerating, and static equilibrium in which a body is at
rest and not accelerating.  The common denominator is no acceleration.

Put another way, if one has equilibrium:

a.)  The sum of the forces acting in the x direction must add to zero  (if
that weren't the case, we would see translational acceleration in the x-
direction);

b.)  The sum of the forces in the y
direction must add to zero; and

c.)  The sum of the torques acting
about any point must add to zero (if that
weren't the case, we would see angular
acceleration).

2.)  Example:  A ladder of length L is
positioned against a wall.  The wall is
frictionless and the floor is frictional.  A man of
mass mm stands on the ladder a distance L/3
from the top.  If the ladder meets the floor at an
angle θ  with the horizontal, and if the ladder's
mass is mL, determine the forces acting at the
floor and the wall.  See Figure 9.4.

a.)  Preliminary Comment #1:  In looking at the ladder's contact with
the floor, it should be obvious that there is both a normal and a frictional
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force acting at that point.  Assume, for the moment, that that fact is not
obvious.

In that case, all we know is that the floor must be providing a net force
Ffloor acting at some unknown angle φ  (note that φ  is not θ  here).  From
experience, we know that unknown forces are easy to deal with, but the math
can get dicey when unknown angles are injected into a situation (angles are
usually attached to sine and cosine functions which can make solving
simultaneous equations difficult).  It would be nice if we could deal with a
force-at-the-floor problem without having to deal with the unknown angle.

That can be cleverly done by noticing that the force-at-the-floor must
have x and y components.  Calling the horizontal component H and the
vertical component V, we can solve for those variables.  We will still have
two unknowns (H and V versus
Ffloor and φ ) but we will have
traded off for a tidier problem.

Note:  Another example of a
situation in which this ploy will be
useful: Consider a lab comprised of a
beam pinned so as to rotate about an
axis at its end (see Figure 9.5).  You
know absolutely nothing about the
magnitude and direction of the force
acting on the beam at the pin, but you
are asked to theoretically determine
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what that force and angle should be under
the circumstances embodied within the set-
up.  This is a prime example of a situation
in which solving for the components is
preferable to hassling with the actual force
vector and its angle.

b.)  Preliminary Comment #2:
Because the wall is frictionless, the
force acting at the wall is strictly a
normal force.  As such, we will call
that force N.  Note also that the
ladder's weight mLg is concentrated
at the ladder's center of mass at L/2.
This is all shown in the free body
diagram presented in Figure 9.6.
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Solution:

c.)  All the acting forces are in the x and y directions, so there is no
need to worry about breaking forces into their component parts.  We begin
by writing:

  ∑ Fx :

        -N + H = (mm+ mL) ax       (= 0 as  ax= 0)
             ⇒     N = H.

  
∑ Fy :

         -mmg - mLg + V = (mm+ mL) ay       (= 0 as  ay= 0)
             ⇒     V = (mm+ mL) g.

d.)  We have three unknowns and two equations.  The final equation
comes from summing the torques about any point we choose.  For the sake
of amusement, let's choose the ladder's center of mass.  Using   r⊥ :

  ∑ Γ cm :

  N [(L/2) sin θ ] - mmg [(L/6) cos θ ] - V [(L/2) cos θ ] + H [(L/2) sin θ ] = Icmα 
      = 0 as α = 0

⇒     N = [(mmg/6) cos θ  + (V/2) cos θ  - (H/2) sin θ]/[(1/2) sin θ]

Note 1:  The equation we have generated above has four torque calcula-
tions instead of five--the torque due to the weight of the beam produces no torque
about the center of mass as that force acts through the center of mass.  Forces
that act through the point about which the torque is being taken produce no
torque about that point.

Note 2:  This last equation is comprised of three unknowns.  To solve it,
we will have to go back to our original two equations, lift the derived values for V
and H (in terms of N) and plug them into this last equation.  The end result will
be a very messy equation to solve.  Once N is found, we will then have to go back,
plug N into the H and V equations and solve some more.



Ch. 9--Rotn. Motn. II

269

It would have been so much easier to have generated a "final" equation
that had only one unknown in it (say, N).  We could have done just that if we had
summed the torques about the floor!

Doing so yields:

  ∑ Γ floor :

     N [L sin θ ] - mmg [(2L/3) cos θ ] - mLg [(L/2) cos θ ] = Ifloor α = 0
⇒    N = [(mmg) (2/3) cos θ  + (mLg) (1/2) cos θ ] / sin θ .

This is a smaller equation (you had to do torque calculations for only three
forces) and has only one unknown.

Bottom Line:  Take your torques about whichever point will eliminate as
many unknowns as possible (assuming you don't eliminate them all).

C.)  Rotational Analog to Newton's Second Law:

1.)  Just as a net force motivates a body to translationally accelerate, a
torque motivates a body to angularly accelerate.  For translational motion,
Newton's Second Law states that the sum of the forces acting in a particular
direction will equal the mass of the object times the object's acceleration.
Mathematically, this takes the form:

    ∑ Fx :

(F1,x)  +  (F2,x)  +  (F3,x)  +  . . . = +max.

For rotational motion, Newton's Second Law states that the sum of the torques
acting about any point must equal the moment of inertia (the mass-related
rotational inertia term) about an appropriate axis through that point times the
object's angular acceleration.  Mathematically, this looks like:

  
∑ Γ p :

( ΓF1
)  +  ( ΓF2

)  +  ( ΓF3
)  + . . . = +Ip α

The easiest way to see the consequences of this law is by using it in a problem.

2.)  Example:  Determine the angular acceleration α  of the beam shown in
Figure 9.7a (next page).  Assume you know its length L, its mass m, and the fact
that the moment of inertia of a beam about its center of mass is (1/12)mL2.
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a.)  Using the f.b.d. shown in Figure 9.7b and the Parallel Axis
Theorem, the sum of the torques about the axis of rotation (i.e., the pin) is:

  
∑ Γ pin :

 -mg (L/2) cos θ  = - Ipin α

                       = - [      Icm       +    md2    ] α

     = - [(1/12) mL2 + m(L/2)2] α
          ⇒     α  = 3 (g cos θ )/(2L).

b.)  Notice that the angular acceleration is a function of the beam's
angular position θ .  As θ  changes while the beam rotates, the angular
acceleration changes.  Conclusion:  If you had been asked to determine,
say, the angular velocity of the beam at some later point in time, you
would NOT be able to use rotational kinematics to solve the problem.

D.)  Rotation And Translation
          Together--Newton's Second Law:

1.)  Determine the acceleration of the
hanging mass shown in Figure 9.8 if it is
released and allowed to accelerate freely.
Assume you know the mass of the hanging
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weight mh, the pulley's mass mp, radius R, and the moment of inertia about its

center of mass Icm = (1/2) mpR2 (we are taking the pulley to be a uniform disk).

a.)  We are looking for an acceleration.
This should bring N.S.L. to mind almost
immediately.  Using that approach with the
f.b.d. shown in Figure 9.9  yields:

  
∑ Fy :

     T - mhg = -mha
         ⇒     T = mhg - mha      (Equ. A).

There are two unknowns in this equation, T
and a.  We need another equation.

b.)  Figure 9.10 shows a free body
diagram for the forces acting on the pulley.
Summing the torques about the pulley's pin
yields:

  ∑ Γ cm :

- TR = - Icm α

        = - [(1/2) mpR2] α
       ⇒    T = [(1/2) mpR] α.

c.)  We can further simplify this equation by remembering that the
translational acceleration a of a point on the PULLEY'S EDGE a distance
R units from the axis of rotation (this will also be the acceleration of the
string) is related to the angular acceleration α  of the pulley by:

a = R α.

Using this to eliminate the α  yields:

T = [(1/2) mpR] (a/R).
    = (1/2) mp a (Equation B).



272

Atwood
   Machine

   pulley
supported
 by ceiling

m
1

m
2

FIGURE 9.11

   misguided f.b.d
on Atwood Machine

T T

   corrected f.b.d
on Atwood Machine

T T
1 2

forces at pin
   (provide
    no torque)

FIGURE 9.12a FIGURE 9.12b

d.)  Putting Equation A and Equation B together yields:

       (1/2) mp a = mhg - mha
  ⇒    a = (mhg)/(mh + mp/2).

2.)  A trickier problem:  Consider the Atwood
Machine shown in Figure 9.11.  If the pulley is
massive and has the same characteristics (i.e.,
mass, radius, moment of inertia, etc.) as the one
used in the problem directly above, determine the
magnitude of the acceleration of the masses as they
freefall.  (Assume m1 is more massive than m2).

Note:  Notice that the f.b.d. in Figure 9.12a
depicts a peculiar situation.  If both tensions are T,
the net torque acting about the pulley's center of
mass is zero.  That is, if both tensions are equal,
they produce torques that are equal in magnitude and opposite in direction and,
hence, cancel one another
out.  With no net torque
acting on the pulley, it will
not angularly accelerate.
And with no angular
acceleration, it will not
rotate.

This clearly is an
unacceptable situation--
everyone knows that pulleys
rotate.  The problem?  When
a pulley is massive, the
tension in a rope draped
over it will not be equal on
both sides, assuming the
system is angularly accelerating.  A more accurate depiction of the forces acting
on a massive pulley is, therefore, seen in Figure 9.12b.

a.)  Figure 9.13a shows the f.b.d. for mass m1:
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b.)  Newton's Second Law  yields:

  
∑ Fy :

                      T1 - m1g = - m1a
             ⇒     T1 = m1g - m1a.

Call this Equation A (note the sign in front of the acceleration term).

c.)  Figure 9.13b shows the f.b.d. for mass m2.  N.S.L. yields:

  
∑ Fy :

                       T2 - m2g = m2a
       ⇒     T2 = m2g + m2a.

Call this Equation B.

d.)  At this point, we have three unknowns (T1, T2, and α ) and only
two equations.  For our third equation, we need to look at the pulley.
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e.)  Figure 9.14 shows the
f.b.d. for the pulley.  The
rotational counterpart of
N.S.L. yields:

  ∑ Γ cm :

T1R - T2R = Icm α

= [(1/2) mpR2] α

  ⇒    T1 - T2 = [(1/2) mpR] α

Call this Equation C (note the sign in front of the angular acceleration term).

f.)  Equation C introduces another unknown, α.  Fortunately, we
know α  in terms of a and R:

astring = R α (Equation D),

which leaves us with:

 T1 - T2 = [(1/2) mpR] (a/R)
 = (1/2) mpa.

g.)  Using Equations A, B, C, and D, we get:

                   T1        -          T2        = (1/2) mp a
(m1g - m1a) - (m2g + m2a) = (1/2) mp a

   ⇒   a = [m1g - m2g]/[m1 + m2 + mp/2].

3.)  Rotation with a twist:  Consider a
hollow ball of radius R and mass m rolling down
an incline of known angle θ  (Figure 9.15).
What is the acceleration of the ball's center of
mass as the ball rolls down the incline?

a.)  The free body diagram for the
forces and force-components acting on the
ball is shown in Figure 9.16.  The axis
has been placed along the direction of the
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translational acceleration of the ball's
center of mass--i.e., along the line of the
incline.  Noting that there must be
rolling friction in the system, a
summing of the forces along that line
yields:

    ∑ Fx :

       fr - mg sinθ   = - macm.

Call this Equation A.

b.)  This would be easy if we knew
something about the rolling friction
between the ball and the incline.  As we do not have that information, we
haven't a clue as to the magnitude of the rolling frictional force fr.

Stymied, let's consider the rotational counterpart to N.S.L.

c.)  Noticing that both the normal force and the force due to gravity
pass through the center of mass, summing the torques about the center of
mass yields:

  ∑ Γ cm :

fr R = Icmα

             = [(2/3) mR2]α
         ⇒     fr = [(2/3) mR]α (Equation B).

d.)  We know the relationship between the acceleration of the center of
mass (acm) and the angular acceleration about the center of mass is:

acm = R α (Equation C).

This means we can write:

fr = [(2/3) mR] (a/R)
    =  (2/3) ma.

e.)  Combining Equations A, B and C yields:
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  fr      - mg sinθ    = - macm
⇒   (2/3) ma - mg sin θ    = - macm

⇒   acm = [g sin θ]/[1 + (2/3)]
    = (3/5)g sin θ .

  Note:  Knowing the translational acceleration of the center of mass, we
can determine the angular acceleration of the ball using acm = Rα :

acm = R α
        ⇒    α = acm / R

        = [(3/5)g sin θ ] / R.

E.)  A Weird But Effective Alternate Approach:

1.)  There exists an altogether different way of looking at problems in
which a body rolls without slipping.  The following endeavors to present the
rationale behind the needed perspective.

2.)  Consider an incline so slippery that a ball is sliding down its face
without rolling at all (see Figure 9.17).

a.)  Relative to the
incline, there will be
sliding motion between the
bottom of the ball (i.e., the
point on the ball that
touches the incline--Point P
in Figure 9.17) and the
incline itself.

b.)  Put another way,
at any given instant the
point-on-the-ball that
happens to be in contact
with the incline will have a
velocity along the line of
the incline (in the x
direction) relative to the
stationary incline.

c.)   Bottom line:  Point P moves; the incline does not.
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3.)  A ball that rolls without slipping, on the other hand, will experience
no relative motion in the x direction between the point that happens to be in
contact with the incline (Point P in Figure 9.18) and the STATIONARY incline.

a.)  This not-so-obvious fact is justified as follows:  If the ball is NOT
SLIDING over the incline's surface (i.e., as long as we are not dealing with
the case cited in Part 2 above), the velocity of the stationary incline and
the velocity of the NON-SLIDING point-of-contact-with-the-incline must
be the same.

b.)  Bottom line:  If the incline's velocity in the x direction is zero,
Point P's instantaneous velocity in the x direction must also be zero.

4.)  Let us now take a few moments to re-examine the rolling situation in
which there is no slippage between the ball and the incline.

a.)  Relative to the
incline, the top of the
rolling ball (by top, we
are talking about the
point on the ball far-
thest from the incline's
surface--the point whose
y coordinate is greatest;
this is labeled Point A in
Figure 9.18) is instanta-
neously translating
faster than the center of
mass of the ball, and the
center of mass is instan-
taneously translating
faster than the bottom
(i.e., Point P).

b.)  In fact, the velocity of Point A is twice that of the center of mass.

c. )  As stated above, Point P is NOT MOVING AT ALL instanta-
neously in the x direction, relative to the stationary incline (if this isn't
clear, ask in class or look at the Note at the end of the chapter).

5.)  Consider another situation.  The ball in Figure 9.18 is taken off the
incline and a pin is placed through Point P.  The pin is mounted so that the ball
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can rotate freely about the pin.  The ball is then allowed to freefall.  What can we
say about the ball as it rotates about an axis through this point on its
circumference?

a.)  Begin by examining Figure 9.19.

b.)  Notice that
Point A on the ball is in-
stantaneously translat-
ing faster than the cen-
ter of mass of the ball,
and the center of mass is
instantaneously trans-
lating faster than the
bottom (i.e., Point P).

This is exactly the
same characteristic as
was observed in the
instantaneous "rolling"
situation outlined above.

c.)  Also, the
instantaneous velocity of
Point A is twice that of the center of mass.

Again, this is exactly the same characteristic as was observed in the
instantaneous rolling situation outlined above.

d.)  Notice that the translational velocity of the ball at Point P (i.e., at
the axis of rotation) is zero.

For the last time, this is exactly the same characteristic that was
observed in the instantaneous rolling situation outlined above.

6.)  The characteristics of motion for a ball rolling down an incline and a
ball pinned to execute a pure rotation appear to be quite similar.  In fact, the
question arises, "If you could not see what was supporting the ball and only got a
quick look, could you be sure which of the two situations you were observing?"
That is, could you tell if you were seeing:

a.)  A ball rolling down an incline (i.e., rotating about its center of
mass while its center of mass additionally translates downward toward the
left); or

b.) A ball executing a pure rotation about an axis through its perimeter?
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c.)  The fact is, if all you got was a glance, it would be impossible to tell
the difference between the two situations.

d.)  Consequences:  When dealing with a body that is both translating
and rotating without slippage (i.e., executing a pure roll), an alternate
way to approach the situation is to treat the moving object as though it
were instantaneously executing a pure rotation about its point of contact
with the surface that supports it (Point P in the sketch).  Analysis to
determine, for instance, the "instantaneous acceleration of the center of
mass" at a particular instant will yield the same answer no matter which
perspective you use.  As far as the bottom line goes, they are identical.

7.)  Do you believe?  Let us try both
approaches on the same problem and see how the
two solutions compare.  Reconsider the "ball
rolling down the incline" problem.

The question:  "What is the angular
acceleration of a ball of mass m as it rolls down
the incline shown in Figure 9.20?"

Note:  We could as easily have decided to
solve for the instantaneous translational
acceleration of the center of mass instead.  The

N

mg

x
y
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0

mg sin 0

mg cos 0

f r

FIGURE 9.21

two parameters are related by acm = Rα ; knowing one parameter means we
know the other.

a.)  We have already approached this problem from the point of view
of a ball rolling down an incline.   The
solution for the ball's angular acceler-
ation about its center of mass, derived
in Part 3e of the previous section, was:

    α = [(3/5)g sin θ ]/R.

b.)  Consider now a pure rotation
about Point P:

i.)  From the free body diagram
shown in Figure 9.21, we begin by
summing the torques about Point P.
As the normal and frictional forces
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act through Point P, the   r⊥  approach yields:

    
  
∑ Γ p :

             (mg)(R sin θ ) = Ip α.

ii.)  We do not know the moment of inertia about Point P, only the
moment of inertia about the center of mass.  As the torque is being
taken about Point P, we need Ip.  Using the Parallel Axis Theorem, we
write:

 Ip = Icm + Md2

          = (2/3)mR2 + mR2

          =  (5/3)mR2.

Note:  The variable m in the above equation is the total mass in the
system (this happens to be the mass of the ball in this case); d is the distance
between the two parallel axes (i.e., the axis through the center of mass and the
axis through Point P); and m is the mass of the ball.

iii.)  Completing the problem:

  
∑ Γ p :

                (mg)(R sin θ ) = Ip α

                (mg)(R sin θ ) = [(5/3) mR2]α

  ⇒    α =  [g sin θ ]/[(5/3)R]

      =  [(3/5)g sin θ ]/R.

iv.)  This is exactly the angular acceleration solution we
determined using the "rolling" approach to the problem.  If we
additionally wanted the instantaneous translational acceleration of
the center of mass, we could use acm = Rα , yielding:

acm = R α
       = R [(3/5)g sin θ ]/R

    = (3/5)g sin θ .

Again, this is exactly what we determined using the other method.
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c.)  Bottom line:  There are two ways to deal with a rolling object that
is not additionally sliding.  You can either treat it:

i.)  As a body executing a pure roll (i.e., as a body whose mass is
rotating about its center of mass while its center of mass is itself
translating); or

ii.)  As a body instantaneously executing a pure rotation about its
perimeter at the point of contact with the structure that supports it.

8.)  Which way is the best?  It depends upon you.  The first approach is
more conventional but requires the use of both the translational and rotational
counterparts to Newton's Second Law.  The second approach (the "weird" one)
requires only the use of the rotational version of N.S.L., but the torques are not
taken about the center of mass so the parallel axis theorem must be used to
determine the moment of inertia Ip about the appropriate axis.

My suggestion is that you use the approach that seems most sensible, given
what the system is doing.  If, for instance, you see pure rotation, use the rotational
approach.  If there is rotation and translation happening, use the other approach.

F.)  Energy Considerations and Rotational Motion:

1.)  Remembering back, energy considerations are useful whenever the
forces in a system are conservative and the velocity or a distance traveled is the
parameter of interest.  Briefly, energy considerations and the modified
conservation of energy equation were derived as follows:

a.)  We began by writing out the WORK/ENERGY THEOREM (i.e.,
the net work done on an object is equal to the change of the body's kinetic
energy) for a body that moves from Position 1 to Position 2 under the
influence of a number of forces.  The equation was:

            Wnet                    = ∆ KE
        ⇒    WA + WB + WC + WD + . . . = ∆ KE,

where WA was the work force A did on the object as it moved from Position
1 to Position 2, etc.

b.)  We derived expressions for the work done by all the conservative
forces with known potential energy functions as the body moved from
Position 1 to Position 2:
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     Wcons force A = -       ∆ UA
                          = - ( UA,2 - UA,1)

c.)  We derived a general expression for the work done by any non-
conservative force.  We did the same for any conservative forces for which
we did not know a potential energy function.  For both cases:

         WnoPEfct,C = FC . d        etc.

d.)  Putting it all into the work/energy theorem (i.e., Wnet = ∆ KE), we
ended up with:

                [-(UA,2- UA,1)] +  [- (UB,2- UB,1)] + (FC . d) + (FD . d) + . . . = (1/2) mv2
2 - (1/2 )mv1

2.

e.)  Rearranging by putting the "before" quantities on the left-hand side
of the equation and the "after" quantities on the right-hand side, we got:

          (1/2)mv1
2+ UA,1+ UB,1+ (FC . d) + (FD . d) + . . . = (1/2)mv2

2+ UA,2 + UB,2.

f.)  This was put in short-hand form:

  KE1 + ∑  U1 + ∑  Wextraneous = KE2 +  ∑ U2.

g.)  The last touch: We noticed that in a system of more than one body,
the total kinetic energy in the system at a given instant is the sum of all
the kinetic energies of all the bodies moving in the system at that instant.
As such, the final form of the modified energy conservation equation
became:

∑  KE1 + ∑  U1 + ∑ Wextraneous = ∑  KE2 +  ∑  U2.

2.)  This equation also works fine for rotating systems.  There are only two
changes to be made:

a.)  Although there may still be kinetic energy due to the translational
motion of bodies within the system, there can now also be kinetic energy
due to the rotational motion of bodies within the system.  That means the
total kinetic energy term has a new member--rotational kinetic energy.  As
such, we need to write:
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∑  KE1 = ∑  KE1,trans + ∑  KE1,rot.

Note:  We determined at the end of the last chapter that just as the
translational kinetic energy of an object is (1/2)mv2, the rotational kinetic energy
of an object is (1/2)(Iaxis of rot)ω

2.

b.)  Concerning gravitational potential energy:  Consider a body that
moves some vertical distance h in a gravitational field.  Its change of
potential energy will be +mgh.  Why?  Because the potential energy
function for gravity is related to the vertical distance traveled.  The ques-
tion is, "How do you determine the vertical distance traveled if the motion
is that of a rotating body?"

i.)  Example:  A pinned beam rotates from one angular position to
a second (see Figure 9.22 to
the right).  What is its change
of potential energy during the
move?  Put another way, what
is h in the mgh equation that
defines changes of
gravitational potential energy?

ii.)  As shown in the sketch,
h is defined as the vertical
displacement of the body's
center of mass.

Note:  As there is rotational
kinetic energy, is there rotational
potential energy?

The answer to that question is yes
and no.  It is theoretically possible to
define a potential energy function that
tells you how much work a torque Γ  does
on a body as the body moves through some angular displacement ∆θ , but you
will not deal with such a function in this class.

Nevertheless, when you use the conservation of energy equation you may
be asked to determine the amount of work (F.d) done as friction acts at the axle
of a rotating object.  In that case, d equals r ∆θ , where r is the distance between
the axis of rotation and the place at which the friction acts.
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G.)  Energy Consideration Examples:

1.)  A typical Pure Rotation Problem:
A beam is frictionlessly pinned (see Figure
9.23).  From rest, the beam is allowed to
freely rotate about its pinned end from an
angle θ 1 = 30o with the vertical.  If the
beam's mass is M, its length is L = 2
meters, and its moment of inertia about its
center of mass is (1/12)ML2, what is its
angular velocity as it passes through   θ 2 =

70o with the vertical?

a.)  We are looking for a velocity
(it is an angular velocity, but a

L/2

h = (L/2) cos 0  - (L/2) cos 0
21

h

L/2 cos 01

01

20

L/2 cos 0
220

FIGURE 9.24

velocity nevertheless).  The first approach that should come to mind
whenever a body falls in a gravitational field and a velocity value is
requested is the modified conservation of energy approach.  Executing that
approach yields:

∑  KE1  +  ∑  U1      + ∑  Wextran  =    ∑  KE2        +  ∑  U2
     0    + Mg (L/2) (cos θ1 - cos θ2)   +    0           =  (1/2)Ip ω2

2    +     0  .

Note 1:  Notice that there was no initial angular velocity.  That didn't
have to be the case.  DON'T
BE LULLED INTO THE
BELIEF THAT v1 AND ω 1
WILL ALWAYS BE ZERO!

Note 2:  Figure 9.24
illustrates how the position
of the center of mass
(depicted by a circle on the
beam) changes during the
drop.  The right triangle
used to determine the final
position of the c. of m.
relative to the pin is shown
in the drawing.  A similar
triangle would be used to
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determine the c. of m.'s initial position.  The difference between the two yields
the drop distance h.

b.)  We know the moment of inertia about the center of mass.  We need
the moment of inertia about the pin.  Using the Parallel Axis Theorem, we
get:

Ip = [(1/12) ML2] + M(L/2)2

    =  (1/3) ML2.

c.)  Putting it all together and solving, we get:

Mg[(L/2)(cos 30o - cos 70o)] =  (1/2)(ML2/3)ω2
2.

d.)  The M's cancel, leaving:

   (9.8 m/s2 )(2 meters /2)(.524) = .5[(2 meters)2/3]ω2
2

  ⇒ ω2 = 2.78 radians/sec.

2.)  A typical Rotation and
Translation Problem:  Consider a string
wrapped around a massive pulley.  One end
of the string is attached to a hanging
weight of mass m.  The system is allowed to
accelerate freely.  At some instant, the
hanging weight is observed to be moving
with velocity v1 = 3 m/s.  What will its
velocity be after it has fallen an additional
.8 meters?  You may assume that the
pulley's mass is M = 4m, its radius is R,
and its moment of inertia is 3mR2.  The
system is shown in Figure 9.25.

a.)  Initially, there is kinetic en-
ergy wrapped up in both the rotating
pulley and the hanging mass, and
there is initial potential energy wrapped up in the hanging mass.  Using
the Conservation of Energy equation on this situation yields:
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              KE1                +  ∑  U1    + ∑  W =         ∑  KE2                 + ∑  U2
         [.5Ipul,cmω1

2 + .5mv1
2] +  mgh1   +  0      = [.5 Ipul,cmω2

2 + .5 mv2
2] +  [0]

    ⇒     .5 (3mR2)ω1
2  + .5mv1

2 + mgh1 = .5 (3mR2)ω2
2 + .5 mv2

2 .

Important Note:  Why not include tension in the line in the work
calculation?  The short answer:  Because it's an internal force.  The long answer:
Because the work that tension does on m is -Th while the work that tension does
on the pulley is +T(  R∆θ ) = +Th.  The consequence of all of this is that the net
work done by the tension T (again, an internal force) is ZERO.

b.)   We know that the velocity v of the string (hence the velocity of the
hanging mass) is the same as the velocity of the edge of the pulley.  This
equals Rω .  That means ω  = v/R.  Using this, we can cancel the m's,
eliminate the w terms and solve:

   .5 (3mR2)(v1/R)2 + .5mv1
2 + mgh1 = .5 (3mR2)(v2/R)2 + .5mv2

2

             1.5v1
2 + .5v1

2 + gh1 = 1.5v2
2 + .5v2

2

      2v1
2 + gh1 = 2v2

2

⇒     v2 = [v1
2 + gh1/2]1/2

   = [(3 m/s)2 + (9.8 m/s2)(.8 meters)/2]1/2

   = 3.59 m/s.

c.)  The question could as easily have asked for the final angular
velocity of the pulley.  It is the same problem with one exception: you
would have eliminated the v terms with v = Rω  instead of eliminating ω
with ω  = v/R.

If we knew beforehand that v2 = 3.59 m/s, we would have used v =

R ω  to calculate:
            ω2 = v2/R

    = (3.59 m/s)/R.

3.)  A typical Rotation and Translation
Mixed In One Problem:  Figure 9.26 shows a
ball rolling up a 30o incline.  At the initial
instant, the ball's center of mass is moving
with velocity v1 = 8 m/s.  How fast will its
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center of mass be moving after traveling an additional .3 meters up the incline?
Assume the ball's mass is m = .2 kg, its radius is R = .1 meters, and its moment of
inertia about its center of mass is (2/5)mR2.

Note:  Thinking back to the section on angular acceleration and Newton's
Second Law, we found that any situation in which an object rolls without
slipping can be treated either as: 1.) motion around the center of mass plus
motion of the center of mass (i.e., a roll), or  2.) an instantaneous, pure rotation
about the point of contact between the object and the support upon which it rolls
(i.e., a pure rotation).  We will approach this problem both ways.

The "rotation and translation of the center of mass" approach:

a.)  Looking at the ball's motion when first observed, two kinds of
motion are taking place relative to the ball's center of mass.  The ball is
rotating around its center of mass with angular velocity   ω 1 , and the ball's
center of mass is itself moving with velocity v1.  In other words, the initial
kinetic energy, as far as the center of mass of the system is concerned, is:

    KE1,tot = (1/2)I1,cm ω1
2 + (1/2)mv1

2.

b.)  For the sake of ease, let us define the gravitational potential
energy of the ball when at Position 1 as zero.

c.)  (THIS IS IMPORTANT):  Rolling friction exists within the system,
but rolling friction does so little work on the ball that the energy loss due
to it is negligible.  As such, we will approximate it to be zero.  That means
that there are no extraneous forces doing work on the system which, in
turn, means that  ∑  Wextr = 0.

d.)  Writing out the conservation of energy equation, we get:

    ∑  KE1                  + ∑  U1 + ∑  Wext =             ∑  KE2                    + ∑  U2
{(1/2)I1,cm ω1

2+ (1/2)mv1
2} +   0      +   0         = {(1/2)I2,cmω2

2+ (1/2)mv2
2}+ mgh,

where h is the vertical rise of the ball's center of mass.

e.)  We know that vcm = Rω .  Using that and substituting Icm for a

ball into the equation yields:
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       .5 [(2/5)mR2] (v1/R)2 + .5 mv1
2 = .5 [(2/5)mR2](v2/R)2 + .5mv2

2+  mgh

     (1/5)mv1
2 + .5mv1

2= (1/5)mv2
2 + .5mv2

2 + mgh

        (7/10)mv1
2 = (7/10)mv2

2 + mgh

⇒      v2 = [[.7v1
2 - gh2]/(.7)] 1/2

   = [v1
2 - 1.43gh]1/2.

f.)  To find h, we need to use trig to determine the VERTICAL
distance traveled as the ball rolled .3 meters up the incline.  We know that
the definition of the sine of an angle is equal to "the side opposite the
angle divided by the hypotenuse."  In this case, the "opposite side" is h and
the hypotenuse is .3 meters.  Using this, we get:

  h = (.3 meters) (sin 30o)
     = .15 meters.

g.)  Putting in the numbers, we get:

v2 = [(8 m/s)2 - 1.43(9.8 m/s2)(.15 meters)]1/2

     = 7.87 m/s.

The "pure rotation" approach:

h.)  Reiterating what has previously been stated, we know that if we
look at an object's instantaneous motion, we can't tell whether the object
is rolling or moving in pure rotation about a point on its perimeter.  We've
analyzed the "conservation of energy" problem outlined above from the
first perspective.  Now we will deal with the problem using the "pure
rotation" approach.

i.)  The sketch in Figure 9.27 (next page) assumes the ball is executing
a pure rotation (instantaneously) about a Point P located at the intersec-
tion of the ball and the incline.  If we take the angular velocity of the ball
about P at that instant to be   ω 1 , the ball's initial kinetic energy will be
purely rotational about Point P and will equal:
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    KE1,tot = (1/2)I1,pω1
2.

A similar expression de-
fines the ball's kinetic en-
ergy after traveling up the
incline .3 meters.

j.)  For the sake of
ease, let us define the
gravitational potential
energy of the ball at
Position 1 as zero.

k.)  Writing out the
conservation of energy
equation, we get:

      ∑  KE1      +  ∑  U1  + ∑  Wext  =     ∑  KE2       + ∑  U2
 (1/2)I1,pω1

2   +    0       +    0          = (1/2)I2,pω2
2  +  mgh.

l.)  We know the moment of inertia about the center of mass; we need
the moment of inertia about the pin.  Using the Parallel Axis Theorem, we
get:

Ip = [(2/5) mR2] + mR2

    =  (7/5)mR2.

m.)  Substituting and solving yields:

   (1/2)I1,pω1
2  = (1/2)I2,pω2

2 +  mgh

(1/2) [(7/5) mR2]ω1
2  = (1/2)[(7/5) mR2]ω2

2 +  mgh   

         (7/10) mR2 ω1
2  = (7/10)mR2 ω2

2 +  mgh

⇒     ω2 = [.7R2 ω1
2 - gh]/(.7R2)]1/2

   = [ ω1
2 - 1.43gh/R2]1/2.
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n.)  To determine the velocity of the center of mass, we will have to use
vcm = Rω .  Doing so yields:

ω2 = [ω1
2 - 1.43 gh/R2]1/2

⇒   vcm = R [ω1
2 - 1.43 gh/R2]1/2

     = [R2 ω1
2 - R2(1.43 gh/R2)]1/2

    = [v1
2 - 1.43 gh]1/2.

As expected, our solutions from the two approaches are the same.

Note: WHICH APPROACH IS BEST?  It depends upon the problem.  The
first requires more terms in the conservation of energy equation; the second
utilizes a simpler form of the conservation of energy equation but requires the
use of the parallel axis theorem.

My suggestion?  Learn both approaches and use whichever seems easiest
for a given problem.

H.) Comments on Test Questions:  N.S.L. and ENERGY Considerations:

1.)  When you are asked to determine an acceleration or angular
acceleration, the first approach you should consider is Newton's Second Law.  It
won't always work, but it is one of the most powerful acceleration-involved
approaches available to you.

When you are asked to determine a velocity or angular velocity in a non-
collision situation, the first approach you should consider is conservation of
energy.  Again, it will not always work but it is a very powerful approach.

2.)  A typical test question will have a number of parts to it.  You could, for
instance, be given a ball rolling down an incline and be asked to:

a.)  Derive an expression for the acceleration of the system;

b.)  Derive an expression for the velocity of the ball after having rolled
down the incline a distance h;

c.)  Determine the angular velocity of the ball at the point defined in Part b.

3.)  You no longer have the cues available in previous chapters (i.e., you
can no longer assume that because the chapter you are studying is, for instance,
about Newton's Second Law, that the test problems will be Newton's Second Law
problems only).  You must now first identify the kind of problem you are looking
at, then have the wherewithal to use the appropriate approach.
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I.)  Conservation of Angular Momentum:

1.)  Just as a body moving in straight-line motion has momentum defined
as the product of its inertia (its mass) and its velocity, a rotating body has
angular momentum defined as the product of its rotational inertia (its moment of
inertia) and its angular velocity.  Mathematically, these two are:

p = mv              and                L = Iωω .

Note:  Both momentum and angular momentum are vectors.  As you will
never have to worry about two or three-dimensional angular momentum, the
only part of the vector notation you will normally use when writing out an
angular momentum quantity is the sign.  An angular momentum is considered
"+" if it is associated with motion that is counterclockwise relative to the point
about which the angular momentum is calculated (if this is a pure rotation,
positive angular momentum would correspond to positive angular velocity).
Negative angular momentum is just the opposite.

2.)  Newton observed that there exists a relationship between the net force
acting on a body and the body's change of momentum.   In one dimension, that
relationship is:

Fnet = dp/dt

or, if the force is constant and the time interval large,

Fnet = ∆ p/ ∆ t.

A similar relationship exists between the net torque acting on a body and the
body's change of angular momentum.  That relationship is:

ΓΓ net = dL/dt

or, if the torque is constant and the time interval large,

ΓΓnet = ∆ L/ ∆ t.

Big Note:  If the sum of the net external torque is zero, the CHANGE of
the system's ANGULAR MOMENTUM will be ZERO and the ANGULAR
MOMENTUM will be CONSERVED.
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3.)  In dealing with torque calculations, we found that there are two
general ways to determine the net torque being applied to a body.

a.)  Using strictly translational variables, we write:

         ΓΓ net = r x Fnet.

b.)  Using strictly rotational variables, we write:

 ΓΓ net = Iαα .

4.)  Analogous to the torque situation, there are two general ways to
determine the angular momentum of a body:

a.)  Using strictly translational variables (instantaneous), we write:

 L = r x p.

b.)  Using strictly rotational variables we write:

   L = Iωω .

5.)  Bottom line:  There are two ways to determine the angular momentum
of a point mass.  If you know the moment of inertia of the body about its axis of
rotation and its angular velocity, you can use L = Iω  (this also works for
extended objects).  If you know the body's instantaneous momentum (mv) and a
position vector r that defines its position relative to the axis of rotation, you can
use the relationship L =     rxp .

a.)  Example:  Determine the angular
momentum of an object of mass m circling with
velocity magnitude v and angular velocity ω  a
distance R units from the axis of rotation (see
sketch in Figure 9.28).

i.)  The rotational relationship:  Noting that
the moment of inertia of a point mass a distance
R units from the axis of rotation is mR2, the
magnitude of the angular momentum is:

  L = Iω
             = (mR2) ω .
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 ii.)  The translational relationship:  Noting that the magnitude of
the instantaneous momentum of the body is p = mv, and that the
angle between the line of r and the line of p is 90o, we have:

L =     rxp

       = r (mv sin 90o)
      = mvR.

Noting additionally that v = Rω , we can write:

L = mvR
       = m (Rω ) R
       = m R2 ω .

In both cases, the body's angular momentum is the same.

6.)  Earlier, it was pointed out that when the net torque acting on a body
equals zero, Γ net = ∆ L/ ∆ t = 0.  This implies the angular momentum L does not
change with time (i.e., L is constant).  An expanded way of stating this is
embodied in the conservation of angular momentum equation.  Analogous to the
modified conservation of momentum equation, this relationship for one
dimensional rotational motion (i.e., rotational about a fixed axis) is written as:

∑  L1 + ∑  (Γext ∆ t) = ∑  L2.

a.)  This relationship states that in a particular direction, the sum of
the angular momenta of all the pieces of a system at time t1 will equal the
sum of all of the angular momenta at time t2 if there are no external

torques acting on the system to change the net angular momentum during
the time period.  If external torques do exist, the final angular momentum
increases or decreases during the time period by ∑ ( Γ ext ∆ t).

b.)  When the ∑ ( Γ ext ∆ t) term is zero, angular momentum is said to
be conserved.  This occurs either when there are no external torques acting
on the system or when external torques present are so small and/or act
over such a tiny ∆ t that to a good approximation they do not appreciably
alter the system's motion (hence, the system's total angular momentum).

c.)  The most common use of the conservation of angular momentum is
in the analysis of collision problems (explosion problems, for instance, are
nothing more than fancy collision problems).  Freewheeling collisions
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happen so quickly that even if there are external torques acting on the
system, the total angular momentum of the system just before the collision
and just after the collision will be the same.  In other words, angular
momentum is usually conserved through a collision.

7.)  Example #1 (situation in which a system's moment of inertia changes
but no external torques are applied):  An ice skater begins a spin with his arms
out.  His angular velocity at the beginning of the spin is ω 1= 2 radians/sec and

his moment of inertia is 6 kg.m2.  As the spin proceeds, he pulls his arms in,
decreasing his moment of inertia to 4.5 kg.m2.  What is his angular velocity after
pulling in his arms?

Solution:  Figures 9.29a and 9.29b show the skater before and after
pulling in his arms.  The work required to do the pulling is provided by the
"burning" of chemical energy wrapped up in the muscles of his body.  The force
applied due to that exertion provides no net torque (not only would any such
torque be internal to the system if it existed, there is in fact no torque at all
because the line of the muscle forces acts through the axis of rotation).

As there are no external torques being applied to the skater, his angular
momentum must remain the same throughout (i.e., it is conserved).

a.)  At the beginning of the spin, his angular momentum is:

      L1 = I1 ω1
 = (6 kg.m2) (2 rad/sec)

= 12 kg.m2/s.
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b.)  After his arms are pulled in, his moment of inertia decreases and
the angular momentum expression becomes:

     L2 = I2 ω2
= (4.5 kg.m2) (w2).

c.)  Equating the two angular momentum quantities:

L1 = L2
       12 kg.m2/s = (4.5 kg.m2) (w2)
            ⇒      ω2 = 2.67 rad/sec.

Note:  Although angular momentum is conserved here, energy is not
conserved.  The skater has to use chemical energy within his muscles in pulling
in his arms.  A comparison of the energy before and after the pull-in shows that
there is more kinetic energy in the system after the pull-in than before.  (Try it.
You should find that E1= 12 joules while E2= 16 joules.)

8.)  Example #2 (situation in which a system's moment of inertia changes
but no external torques are applied):  A child of mass 40 kg walks from the edge
of a 4 meter radius merry-go-round (moment of inertia Im.g.r. = 700 kg.m2) to a
position 1.5 meters from the merry-go-round's center.  If the system initially
rotates at 3 radians/second, what is the system's angular velocity once the kid
reaches the 1.5 meter mark?  See Figures 9.30a and 9.30b for "before and after"
views.



296

Solution:

a.)  Once again, any change in the angular momentum of the merry-
go-round will be due to a torque exerted by the walking kid.  But according
to Newton's Third Law, any torque the kid exerts on the merry-go-round
must be matched by an equal and opposite torque exerted by the merry-go-
round on the kid.  In other words, there are only internal torques acting on
the system.  This implies that angular momentum is conserved.

b.)  With that in mind:

         L1,tot = L2,tot
[L1,kid + L1,m.g.r.] = [L2,kid + L2,m.g.r.]

        [I1,kidω1 + Im.g.r.ω1] = [I2,kidω2 + Im.g.r. ω2]

(mR1
2)ω1 + (700 kg.m2) ω1 = (mR2

2) ω2 + (700 kg.m2) ω2

(40 kg)(4 m)2(3 rad/sec) + (700 kg.m2) (3 rad/sec)
= (40 kg)(1.5 m)2 ω2 + (700 kg.m2) ω2

  ⇒     ω2 = 5.1 rad/sec.

Note:  This makes sense.  If the moment of inertia of the kid decreases as
she gets closer to the center of the merry-go-round, the system's angular velocity
must increase if angular momentum is to remain constant.

9.)  Example #3 (situation in which angular momentum is conserved
through a collision):  A child of mass m runs clockwise with velocity v1 right next to

a merry-go-round of mass M, radius R, and moment of inertia .5MR2 (i.e., the
child's radius of motion is effectively R).  The merry-go-round is moving
counterclockwise with angular velocity   ω 1 , where   ω 1  is not related to v1.  The child
jumps on at the merry-go-round's edge.  What is the final velocity of the child?

a.)  The torque that changes the child's motion is produced by the
child's interaction with the merry-go-round, and the torque that changes
the merry-go-round's motion will be produced by its interaction with the
child.  In other words, the torques in the system will be internal.  As such,
the total angular momentum before the collision and after the collision
must be the same.

b.)  With that in mind:



Ch. 9--Rotn. Motn. II

297

         L1,tot = L2,tot
[L1,kid + L1,m.g.r.] = [L2,kid + L2,m.g.r.]

       [-mv1R + (.5MR2)ω1] = [mv2R + (.5MR2)ω2].

Note 1:  We are assuming that the merry-go-round slows with the
collision, but that it continues in the counterclockwise (i.e., positive) direction.
That means the child reverses direction with the collision.

Note 2:  The child's initial angular momentum is associated with
clockwise motion.  As such, the angular momentum is negative.  If you don't
believe me, do rxp and determine the appropriate sign for the cross product.

As v2 = R ω 2 (remember, v1 ≠ Rω 1) we can write:

     [-mv1R + (.5MR2)ω1] = [mv2R + (.5MR2)(v2/R)].

Canceling out R terms and solving, we get:

     v2 = [-mv1 + (.5MR)ω1]/[.5M + m].

J.)  Simultaneous Sliding and Rolling:

1.)  There is a class of problems characterized by the fact that within the
set-up, partial sliding occurs (that is, sliding and rolling happening at the same
time).  The difficulty with such problems is that nothing is conserved and, if
there is rolling and translating occurring during the slide, there is no known
relationship between the body's center of mass velocity and its angular velocity
(i.e., vcm ≠ Rω ).  An example will highlight this kind of situation.

2.)  Example:  When a bowling ball is thrown by an accomplished bowler,
the ball will often start out with no spin at all (i.e., will initially execute a pure
slide), picking up spin as friction between the floor and the ball does work on the
ball, making it roll.  In such cases, there is a period of time during which the ball
partially rolls and partially slides.  With that in mind, consider the following
scenario:  A bowling ball is thrown with an initial velocity of vo, initially
executing a pure slide.  Almost immediately, it begins to both slide and roll
(friction acts immediately).  Only after some time does the ball finally execute a
pure roll (see Figure 9.31 on the next page).

The question?

a.)  Justify the statement, "Nothing is conserved during the collision."
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b.)  Determine the ball's velocity v1 when it finally begins to execute a
pure roll.  This should be in terms of vo.

Solution:

i.)  Energy is not
conserved as friction
(a non-conservative
force) is acting.
Furthermore, we can
not use the extended
conservation of en-
ergy equation be-
cause we don't have
enough information
to determine the
magnitude of the
frictional force or, for
that matter, the dis-
tance over which
sliding friction acts.

Momentum is not
conserved as there is
an external force
acting on the ball (friction from the floor is not a part of the system).  Even
if that isn't obvious, the initial momentum is mvo while the final
momentum is mv2.  As the problem is stated, the two cannot be the same.

Angular momentum is not conserved as there is an external torque
acting on the ball due to friction (in fact, there is no initial angular
momentum as the ball starts out with a pure slide).

ii.)  Because we can't use any of the conser-
vation theorems, we must go back to first prin-
ciples, which is to say Newton's Second Law (see
f.b.d. in Figure 9.32).  If we assume an average
frictional force favg acts on the ball over the time
it takes for the ball to go from a pure slide to a
pure roll, and if we assume that time equals ∆t,
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we can express the acceleration in terms of velocity and time and write:

  ∑ Fx :

        -favg = ma
      = m[(v1 - vo) / ∆t]

          ⇒   -favg∆t = m(v1 - vo).

Note:  As the average force is negative, we would expect a negative sign in
front of the acceleration term.  That sign was not unembedded in our equation
because v1 is less than vo.  As such, the difference v1 - vo will itself be negative
and the required negative will not be lost.

The moment of inertia of a ball is Iball = (2/5)mR2.  Summing the
torques acting on the ball over the pure-slide to pure-roll time interval
(i.e., ∆t), we get:

  ∑ Γ cm :

        -(favgR) = -Iα

           = -[(2/5)mR2][(ω1 - 0) / ∆t]

          ⇒   favg∆t = [(2/5)mR2](ω1)/R

      = [(2/5)mR2](v1/R)/R
      = (2/5)mv1.

Note:  In this case, we had to unembed the negative sign associated with
the negative angular acceleration because the final angular velocity was, itself,
negative (versus the situation we had above where the two velocity terms were
both positive but their difference created the negative).

Adding the two impulse equations (remember, F∆t is impulse), we get:

-favg∆t = m(v1 - vo)
added to

 favg∆t = (2/5)mv1
yields

     0    = (2/5)mv1 + mv1 - mvo
   = (7/5)v1 - vo

              ⇒     v1 = (5/7)vo.
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Contact point's velocity is zero!

3.)  How can you identify a problem like this?  Whenever you have
translation and/or rotation coupled with slippage, you know that: v ≠ Rω ;
the frictional force acting to pull the system out of slippage will always be
non-conservative; the frictional force may be external (in this case, it was);
and because the conservation theorems do not hold in such situations, it's
back to the basics (i.e., N.S.L.).

K.)  Parting Shot and a Bit of Order:

1.)  For every translational parameter, there is a rotational parameter.  If you
are unsure what the rotational kinetic energy equation is, for instance, think about
the translational kinetic energy equation and substitute in I's for m's and ω 's for v's.

2.)  Aside from forces, there are only three or four parameters you will
ever be asked to determine on, say, a semester final: accelerations (angular or
translational), velocities (angular or translational), distances traveled (angular
or translational), and/or time of travel.

As things stand, you have a number of approaches that can generate
equations that will allow you to solve for any or all of the parameters listed
above.  All you have to do is acquire the ability to look at a problem, decide the
appropriate approach to use, and generate the needed equations.

-------------------------------------------------xxxxx-----------------------------------------------------

Note from Section E:  Is the instantaneous ve-
locity of the contact point of a rolling object really
zero?  To the right is a series of snapshots of a
point on a ball that is rolling with constant
angular velocity.  Consider what happens when
the point approaches and comes in contact with
the floor.  In the y-direction, the point transits
from moving downward to moving upward.  At
that transition (i.e., at the contact point), the y-
component of the point's velocity must be zero.  In
the x-direction, the net horizontal distance
traveled by the point as it approaches contact gets
smaller and smaller (i.e., it's slowing down), then
gets larger and larger after making contact (i.e.,
it's speeding up).  At that transition (i.e., at the
contact point), the x-component of the point's velocity is zero.  In short, the net
instantaneous velocity of the point really is zero when it touches the ground.
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QUESTIONS

9.1)  A frictional wheel of mass m = 8 kg, radius R = .6
meters, and moment of inertia (1/2)mR2 (i.e., that of a disk)
is mounted horizontally on a fixed, massless axle.  The
wheel is initially at rest.  A rope is wrapped around the
wheel's circumference and a 12 newton force is applied.  The
axle, whose radius is .2R, provides a 7 newton frictional
force as the wheel rubs against it (see Figure 0).  If the rope-
force F acts for 5 seconds:

a.)  Derive an expression for the angular
acceleration of the wheel during that interval.  Once the expression has
been determined algebraically, put in the numbers.

b.)  What is the instantaneous translational acceleration of a point a
distance (2/3)R from the wheel's central axis during that interval?

c.)  Using the rotational version of Newton's Second Law, derive an
expression for the angular momentum of the wheel at the end of the
period.  Put in the numbers once done.

d.)  Knowing the angular momentum at the end of t = 5 seconds (i.e.,
from Part c), determine the angular velocity of the wheel at the end of the
period.

e.)  If the angular displacement over the 5 second period is
approximately 55.15 radians, determine the angular velocity at the end of
the acceleration using energy considerations.

f.)  Using rotational kinematics, show that the angular displacement
during the acceleration interval is approximately 55.15 radians.

g.)  Use rotational kinematics to verify your solution to Part e.

9.2)  A block of mass m1 = .4 kilograms

sits on a frictional table (coefficient of kine-tic
friction mk = .7).  A massless string is attached
to the block, threaded over a massive pulley
(mass mp = .08 kg; radius Rp = .1875 meters;

and moment of inertia Icm=.5mR2 about the

pulley's center of mass equal to 1.4x10-3

kg.m2), and attached to a hanging mass mh =

1.2 kg (see Figure I).  If the hanging weight is
allowed to freefall from rest:



302

pin

FIGURE II

m
h

0 = 60
o

o

wire

0 = 30

a.)  Derive an expression for the angular acceleration of the pulley
during the freefall.  Put in the numbers when you are finished.

b.)  What is the hanging mass's acceleration during the freefall?
c.)  Derive an expression for the angular velocity of the pulley after the

hanging weight has dropped a distance equal to 1.5 meters.  Do not use
kinematics.  Put in the numbers after you have finished the derivation.

d.)  What is the translational velocity of the hanging mass after
having dropped a distance equal to 1.5 meters (i.e., when the system is in
the configuration outlined in Part c)?  Don't make this hard.  It isn't!

e.)  After falling a distance of h = 1.5 meters, what is the translational
acceleration of the hanging mass?

f.)  Determine the angular momentum of the pulley after the hanging
weight has fallen a distance h = 1.5 meters.

9.3)  A beam of mass mb = 7 kg and length L

=1.7 meters is pinned at a wall and sits at 30o with
the horizontal (see Figure II).  A hanging mass mh=

3 kg is attached to the beam's end, and a wire
oriented at a 60o angle with the horizontal is
attached 2L/3 units up from the pin.

a.)  Derive expressions for the tension T
in the wire and the force components acting
at the pin.  Once derived, put in the numbers.

b.)  Assuming the moment of inertia through the beam's center of mass
and perpendicular to the beam's length (i.e., into the page) is equal to
(1/12)mL2, derive an expression for:

i.)  The moment of inertia of the beam about its pin;
ii.)  The moment of inertia of the hanging mass about the pin;

iii.)  The moment of inertia of the entire system about the pin.
c.)  The wire is cut.  Derive an expression for the initial angular

acceleration of the beam.
d.)  Derive an expression for the instantaneous translational

acceleration of the beam's center of mass just after the wire is cut.
e.)  Derive an expression for the beam's angular velocity once it has

reached a horizontal position.  Put in the numbers once done and do not
use kinematics.

f.)  Determine the translational velocity of the beam's center of mass
once it reaches a horizontal position.

g.)  Determine the angular momentum of the system once the beam
has reached the horizontal.

h.)  Is angular momentum conserved?  Explain.
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9.4)  A merry-go-round has a mass m = 225 kg and a radius R = 2.5
meters.  Three equally spaced children push it from rest tangent to its
circumference until its angular velocity and theirs is .8 radians/second.  At that
point in time, they all hop on.  If we approximate the merry-go-round as a disk; if
the children each have a mass equal to mc = 35 kg; and if they push with 15
newtons of force each:

a.)  Without using kinematics, determine the number of radians
through which the children ran during the push-period.  (Hint:  Think
energy!  Remember also that ∆ s = R ∆θ ).

b.)  Once on, the children proceed to walk from the outer-most part of
the merry-go-round to a point r = 1 meter from the center.  Determine the
angular velocity of the merry-go-round and children once they are at r =1
meter.

c.)  What quantities are conserved as the children move?  Explain.
d.)  What quantities are not conserved as the children move?  Explain.
e.)  Compare the kinetic energy of the system when the children were

at the outer-most part of the merry-go-round and when they were at r1 = 1

meter.  Do these calculated energy values make sense in light of your
response to Parts c and d?  Comment.

9.5)  The freefalling spool shown in
Figure III is actually two wheels of radius Rw
= .04 meters separated by an axle whose
radius is Ra = .015 meters.  If the mass of the
system is .6 kg and the moment of inertia
about the system's central axis is Icm =

1.2x10-4 kg.m2:
a.)  Derive an expression for the

angular acceleration of the system
using Icm (the reason for so
delineating will become evident when

FIGURE IIIb

new axis

you read the next two parts).  Put the numbers in at the end.
b.)  Determine the moment of inertia of the system

about an axis parallel to the central axis and .015
meters below it.  Call this moment of inertia Ia.

c.)  Derive an expression for the angular
acceleration of the system using Ia.  Does this expression
match the one derived in Part a?
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d.)  Determine the angular velocity of the system after the system's
center of mass has fallen d = .18 meters.  Assume the motion starts from
rest, do not use kinematics, and note that there is a tension acting here
(does this last point matter?).

e.)  Determine the velocity of the center of mass after the system has
fallen a distance d.

9.6)  A loaded beam of mass m
and length L is supported at one end
by a pin and at the other end by a
force F (see Figure IV).  If the force
per unit length on the beam is
defined by the function x = kx, where
k is a constant with the appropriate
units and x is measured from the
pin:

a.) What are k's units?
b.)  If F is removed, the beam will swing down.  Derive an expression

for the beam's angular acceleration just as it begins to move (i.e., just after
F is removed).

9.7)  Two bodies of mass
m2 each are attached to either
end of an effectively massless
rod of length d.  The rod is
frictionless and is pinned at its
center (see Figure V to the
right).  A falling wad of putty
whose mass is m1 has velocity vo
just before colliding with the far
right mass as shown, sticking to
that mass upon contact.  If m1 = .9 kg, m2 = 2 kg, d = 1.2 meters, and vo = 2.8

m/s, determine:
a.)  The magnitude of the angular velocity of the rod just after the

collision;
b.)  The amount of energy loss that occurred during the collision, and;
c.)  The net angular displacement of the system from the time just

before the collision to the time when the system came to rest (assume the
system does not rotate through a complete revolution).
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9.8)  A mass m (take it to be a point
mass) slides down a frictionless, circular
incline of radius R and collides with a
pinned meter stick of mass 5m initially
hanging in the vertical.  After the collision,
the rod rotates through an angle θ  before
coming to rest (see Figure VI).  Assuming
R = .4d, determine θ  if:

a.)  The mass m stays at rest
after the collision, and;

b.)  The mass sticks to the rod.

9.9)  Disk #1 has radius r and
mass m.  It initially rotates about a
frictionless pin with an angular
velocity of ω o.  Disk #2 has radius R
and mass M.  Although it is also
supported by a frictionless pin, it is
initially at rest.  At a given instant,
the pin upon which M rests is moved
so that the outer edge of the two disks
come in contact (see Figure VII).
Initially, there is slippage between the
two, but finally the two come into a
pure roll relative to one another (note
that at that time, the velocity of the
edge of each disk will be the same).  In
terms of ω o, determine the final
angular velocity ω 3 of disk #1.
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